
8/21/13 Multithreaded Rasterization - The Chromium Projects

www.chromium.org/developers/design-documents/impl-side-painting 1/5

The Chromium Projects

Home

Chromium

Chromium OS

Quick links

Report bugs

Discuss

サイトマップ

Other sites

Chromium Blog

Google Chrome
Extensions

Google Chrome Frame

Except as otherwise noted,

the content of this page is

licensed under a Creative

Commons Attribution 2.5

license, and examples are

licensed under the BSD

License.

For Developers​ > ​Design Documents​ > ​

Multithreaded Rasterization

@nduca, @enne, @vangelis (and many others)

Implementation status:

crbug.com/169282, and
https://code.google.com/p/chromium/issues/list?q=label:Cr-Internals-
GPU-ImplSidePainting

This feature is referred to as "multithreaded painting" and "impl-side painting" in
some forums. It is now launched on Chrome Android 25.

Background & Problem Statement
Our current compositor thread architecture is built around the idea of
rasterizing layers on the main webkit thread and then, on the compositor
thread, drawing the bits of the layers that we have based on their various
animated and scrolled positions. This allows us to move the page up and
down, e.g. due to finger dragging, without having to block on the webkit
thread. When a tile is exposed that does not have contents, we draw a
checkerboard and wait for the main thread to rasterize that tile.

We want to be able to fill in checkerboards without requiring a new

commit, since that requires going to a busy webkit thread and pulling in a

whole new tree + damage. We also want to be able to render tiles at

multiple resolutions, and quality levels. These kinds of tricks reduce

memory pressure, avoid the jarring interruption of checkerboards.

The Excessive Checkerboarding Problem

A lot of our unwanted checkerboarding comes from invalidates getting
intermixed with "requests" from the impl thread to fill in missing tiles. In the
current architecture, we can only rasterize tiles on the main thread, using
webkit's rendering data structures. If webkit's rendering tree is completely
unchanged, then the page scrolls, all the rasterization requests that go to
the main thread are easily satisifed by webkit.

However, any time javascript changes the rendering tree, we have the
following problem: we have some "newly exposed tiles" that the compositor
thread needs to prevent checkerboarding. But, annoyingly, any of the
previously-painted tiles that webkit says were invalidated. We can only
paint the new rendering tree -- the old rendering tree is gone. So, we have
two options at this point:

1. Draw the new tiles with the new rendering tree, and redraw the old tiles
with the new rendering tree

Search this site

http://sites.google.com/a/chromium.org/dev/
http://www.chromium.org/chromium-projects
http://www.chromium.org/Home
http://www.chromium.org/chromium-os
http://www.chromium.org/for-testers/bug-reporting-guidelines
http://www.chromium.org/developers/discussion-groups
http://www.chromium.org/system/app/pages/sitemap/hierarchy
http://blog.chromium.org/
http://code.google.com/chrome/extensions/
https://developers.google.com/chrome/chrome-frame/
http://code.google.com/policies.html#restrictions
http://creativecommons.org/licenses/by/2.5/
http://src.chromium.org/viewvc/chrome/trunk/src/LICENSE
http://www.chromium.org/developers
http://www.chromium.org/developers/design-documents
https://code.google.com/p/chromium/issues/list?q=label:Cr-Internals-GPU-ImplSidePainting

8/21/13 Multithreaded Rasterization - The Chromium Projects

www.chromium.org/developers/design-documents/impl-side-painting 2/5

2. Draw only the new tiles, and let the old tiles stick around.

#2 doesn't work well at all, of course: if you have a page that toggles
between green and blue constantly, what you'd see is a random mix of
green and blue page at any given moment. We want to preserve the
"atomicity of rendering" --- meaning that the complete state of a web page
at rAF time is what gets put on the screen.

There is a variant on 2 where we draw the new tiles, as well as any old tiles
that are *onscreen*. If a tile is offscreen, then we make a note that is is
invalid, but dont repaint it. In the green-blue scenario, this causes the
screen to be green or blue, but never both, as long as you dont scroll. We
ship this on Chrome Android m18. Even so, this is undesirable: if you
scroll, you'll see a mix of content. This is expedient performance wise, but
makes us all feel dirty.

Our other source of heavy checkerboarding is latency related. The work we
do on the main thread is based on as scroll position update message that
comes from the impl thread. This message is itself not very latent, arriving
on the main thread milliseconds after it is sent. However, paints for a new
set of tiles can take 300ms + to complete, even with the relaxed atomicity
approach described above. By the time we have painted all 300ms worth of
work, the page has scrolled way past the original scroll position, and half of
the tiles we worked hard to prepare are irrelevant. We have discussed a
variety of solutions here, but the real core problem is that the main thread
cannot be updated fast enough with the new scroll positions to really ever
keep up properly.

Planned Solution

Display lists. Namely, SkPictures, modified a bit to support partial updating.
We call this a Picture pile, a name borrowed from the awesome folks
behind Android Browser. The idea is to only capture a display list of the
webkit rendering tree on the main thread. Then, do rasterization on the impl
thread, which is much more responsive.

On main thread, web content is turned into PictureLayers. Picture layers
make a recording of the layer into a PicturePile. We track invalidations in
SkRegions and during the display list capture process, decide between re-
capturing the entire layer or just grabbing the invalidated area and drawing it
on-top of the previously recorded base layer.

During commit, we pass these PicturePiles to a PictureLayerImpl. Recall,
layers can change in scale over time, under animation, pinch zoom, etc. To
handle this, a PictureLayerImpl manages one or more PictureLayerTiling
objects (via a PictureLayerTilingSet), which is a decomposition of the
layer's entire contents into tiles at a picture screenspace resolution. So for
example, a 512x512 layer might have a tiling into 4 256x256 tiles for a 1:1
ratio of screenspace pixels to content pixels, but also 1 256x256 tile for a
1:2 ratio of screenspace to conten space. We manage these tilings
dyanmically.

A tiling itself takes the layers entire size, not just the visible part, and breaks
it up into Tiles. Each tile represents a rectangle of the PicturePile painted

8/21/13 Multithreaded Rasterization - The Chromium Projects

www.chromium.org/developers/design-documents/impl-side-painting 3/5

into a Resource ID [think, GL texture], at a given resolution and quality
setting.

Every tile is given a set of TilePriority values by the PictureLayerImpl based
on its screen space position, animation and scroll velocity, and picture
contents. These different priorities encode how soon, in time units, the tile
could be visually useful onscreen. Key metrics are things like "how soon
will it be visible" and "how soon will it be crisp" and "is this a tile we'd use if
a crisp one wasn't available?"

These Tiles are registered to the TileManager, which keeps these tiles
sorted based on their priority and some global priority states. Tiles are
binned in orders of urgency (needed now, needed in the next second,
needed eventually, never going to be needed) and then sorted within their
bin. The total GPU Memory budget is then assigned in decreasing priority
order to these tiles. Tiles that are given permission to use memory are then
added to a rasterization queue if needed.

The raster thread scheduler is a very simple solution: on the impl thread,
we simply pop from the raster queue, dispatch the raster task. We keep a
certain number of jobs enqueued per thread, opting to not enqueue them all
so that if the prioritization changes much in the future, we wont do
redundant work.

JPEG/PNG/etc bitmaps are stored in the display lists in still-encoded form
to keep display list recording cost low and memory footprint small. Thus,
the first time we draw a bitmap, a costly decode and downsample
operation may be needed. Thus, before dispatch, tiles are "cracked open"
to determine whether any bitmaps need to be decompressed, using the
SkLazyPixelRef interface to WebCore's ImageDecodingStore. If decoding
is needed, the tile is held in a side queue while a decoding task is
dispatched to the raster threads. When the decodes are done, raster tasks
are enqueued.

This approach fixes the “atomicity of commits” problem by allowing us to
servie checkerboard misses without havin to go to the laggy, potentially
changed main thread. In the previous example, when the compositor sees
a checkerboarded tile, we can rasterize it without having to start a commit
flow, allowing us to disallow commits entirely during flings and other heavy
animation use cases.

Hitch-free commits

A key challenge with this approach is switching from the old tree to the new
tree. In the existing architecture, when we go to switch to the new tree, we
have painted and uploaded all the tiles, so the tree can be immediately
switched.

In the impl-side painting architecture, we need to create PictureLayerImpl's
in order to begin rasterizing them. Moreover, those impls need to be
attached together to the LayerTreeHostImpl in order to get their
screenspace positions, which are essential in computing their priorities.

The obvious way to do this is to simply commit the main tree to the impl
tree like we usually do. However, if we do that, then the impl tree now has

8/21/13 Multithreaded Rasterization - The Chromium Projects

www.chromium.org/developers/design-documents/impl-side-painting 4/5

holes in it where there were invalidations. At this point, the impl-side has
two options when vsync comes around: checkerboard, or drop the frame.
Neither is very cool.

Our solution is the LayerTreeImpl. Whereas the previous architecture's
LayerTreeHostImpl had a root layer and all its associated state, we instead
introduce LayerTreeImpl, which has all the state associated with a layer
tree: scrolling info, viewport, background color, etc. The LTHI then stores
not one, but two LayerTreeImpl's: the active tree is the one we are drawing,
while the pending tree is the one we are rasterizing. Priority is given to the
active tree, but once the pending tree is fully painted, we activate it and
throw away the old one. This allows us to switch between old and new
trees without janking.

Handling Giant SkPictures

One potential challenge to impl-side painting compared to our existing
painting model is that the SkPicture for a given layer are potentially
unbounded. We plan to mitigate this by limiting the PicturePile's size to a
10,000px (emperically determined) portion of the total layer size cenetered
around the viewport at the time of the picture pile's first creation. When the
impl thread starts needing tiles outside the pile's area, we will
asynchronously trigger the main thread to go update the pile around the
new viewport center.

Choosing the scale at which to raster

Whenever we compute the draw properties for a PictureLayerImpl, we also
decide what tilings it should have, or in other words, at what scales it
should have sets of tiles. To do this we track two scale values: The ideal
scale, and the raster scale. The ideal scale is the scale at which we should
create tiles to give the texels in the tile a 1:1 correspondence with pixels on
the screen. The raster scale is the high-resolution scale at which we are
currently creating tiles. When we set the raster scale to be equal to the
ideal scale, we get crisp tiles. This is what we'd like to have at all times, but
we limit this for performance reasons. During a pinch gesture, or an
accelerated animation, the raster scale lags behind the ideal scale. CSS
can change the scale of a layer through the DOM, and we limit how often it
is allowed to change the raster scale. This decision to reset the raster
scale to the ideal or leave it alone is made in
PictureLayerImpl::ManageTilings. Whenever the raster scale changes, we
add a tiling both at the raster scale, and at a low resolution related to the
raster scale. These tilings are marked as HIGH_RESOLUTION and
LOW_RESOLUTION and are given priority as we raster tiles for the layer.

Texture Upload
One key challenge on lowend devcies is that uploading a single 256x256
texture can take many milliseconds, sometimes as crazy as 3-5ms.
Because of this, we have to carefully throttle our texture uploads so that we
dont drop a frame. To do this, we are adopting a new approach of async
texture uploads. Instad of issuing standard glTexImage calls, we instead
place textures into shared memory and then instruct the GPU process to
do the upload when-convenient. This enables the GPU process to do the
upload during idle times, or even on another thread. The compositor then
polls the GPU process via the query infrastructure to determine if the
upload is complete. Only when the upload is complete will we draw with it.

8/21/13 Multithreaded Rasterization - The Chromium Projects

www.chromium.org/developers/design-documents/impl-side-painting 5/5

Handling setPictureListener

If the embedder has a picture listener, we need to send a serialized
SkPicture to the embedding process. We would need to, at every impl-side
swapbuffers, serialize our SkPictures for all the active layers (plus the
bitmaps) and send them to the main thread.

Followup Work

The initial impl-side painting implementation is expected to enable the
following followup use cases:

Low-res tiles: For tiles that take a long time to rasterize, we may
want to rasterize them at half or third resolution. This often
dramatically reduces (5-6x anecdotally) raster cost and allows us to
avoid checkerboarding during fling. However, it is worth noting that
some Android users criticized this behavior on ICS devices as
making fonts look too ugly. High-dpi devices may change the UX
impact of this behavior on users.

Just-in-time scaling: We currently do resizing of content at many
layers in the pipeline. For example, we rasterize layers at their
content resolution without consideration to their screenspace
transform. Thus, a layer that is -webkit-transform: scale(0.5)’d will
actually paint at its full size. Similarly, we resize images inside
webkit at their content resolution. We could reduce
rasterization/decode costs and memory footprint if we could do all
of this scaling using the draw-time transforms on the impl thread.

Accelerated painting: An interesting property of impl-side painting
is that it cleans up our accelerated painting story. We would store
the SkPicture for a layer, and then can decide to rasterize a layer
with the GPU without having to involve the main thread at all in the
process.

Sign in | Report Abuse | Print Page | Remove Access | Powered By Google Sites

Comments

You do not have permission to add comments.

https://www.google.com/a/UniversalLogin?service=jotspot&continue=http://sites.google.com/a/chromium.org/dev/developers/design-documents/impl-side-painting
http://www.chromium.org/system/app/pages/reportAbuse
javascript:;
http://www.chromium.org/system/app/pages/removeAccess
http://sites.google.com/

